SUTURES MATERIAL

Dr.Nahed Khalaf Consultant OBGUN AL-Hada Military Hospital Taif-Saudi Arabia

Suture

A thread that either approximates and maintains tissues until the natural healing process has provided a sufficient level of wound strength or compresses blood vessels in order to stop bleeding.

History

2000 B.C: using strings & animal for suturing

Hippocrates: concept of suturing

200 A.D. Gut of sheep intestine was 1st mentioned as suture material

900 A.D: 1st surgical gut (catgut) for suturing abdominal wounds by an Arabian surgeon

History

- 1500: French army surgeon developed ligation technique for traumatic war injuries
- 1901: catgut & Kangaroo gut were available in sterile glam tubes
- Many materials used: Gold, Silver, metallic wire, silk wire, gut, silk, cotton, tendon, horsehair, linen

Ideal Suture Material

- · Achieve its purpose
- · Disappear as soon as its work was accomplished
- Easy to handle
- Stretched, accommodate wound edema & recoils to original length with wound contraction
- · Minimal tissue reaction & not predisposed to bacterial overgrowth
- · Be non-irritant
- · Capable of secure Knot without fraying or cutting

Characteristics of suture material

Physical characteristic

Physical configuration: mono or multifilament

Capillarity: ability to soak up fluid along the strand

fluid absorption ability

Diameter: in millimeters, expressed in USP sizes with zeroes

(no. of Os', if increased > diameter decreased > tensile strength decreased)

Tensile strength: amount of weight (Breaking load) necessary to break a suture (Breaking Strength)

Elasticity: Inherent ability to regain original form & length after being stretched

Memory: capacity to return to its former shape after being reformed, such as when tied; high memory yield less Knot security

Characteristics of suture material

☐ Handling characteristics
 ☐ Pliability: the material ability to bend
 ☐ Coefficient of friction: the material ability to slip through tissues & ties
 ☐ Knot Strength: force necessary to cause a given type of Knot to slip, partially or completely

Characteristics of suture material

Tissue reaction characteristics:

Inflammatory and fibrous tissue reaction

Absorption

Potentiation of infection

Allergic reaction

Classification of sutures

According to Absorption properties:

Absorbable

Non-absorbable

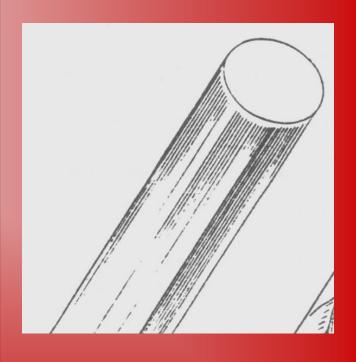
Absorbable

Sutures which are broken down & eventually absorbed by either hydrolysis (Synthetic) or digested by lysosomal enzyme elicited by WBC's (natural)	
Mechanism Natural Lysosomal enzyme Strands Lysosomal enzyme Attack & break Down	
Synthetic Hydrolyzed water gradually penetrate suture filaments & break down suture polymer chain	

Non-absorbable

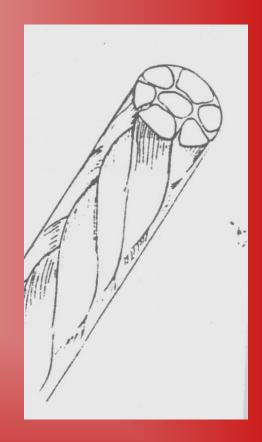
material which tissue enzymes can't dissolve, remains encapsulated when buried in tissues or removable post-op when used as skin suture

Classification of sutures


According to number of stands

Poly-filament

Mono-filament


Mono-filament

- > single strand of material
- High handling characteristics (passes more smoothly through tissues + tie down easily)
- Less tissue reaction characteristics (resist harboring organisms which may cause suture line infection
- > Higher chance of suture breakage
- Lower physical characteristics (lesser tensile strength, pliability & flexibility)

Poly-filament

- > several filaments or strands twisted or braided together
- Lower handling characteristics
- More tissue reaction characteristics
- > Lower chance of suture breakage
- > Higher physical characteristics

<u>Absorbable</u>	Raw Material	Tensile Strength	Absorbtion Rate	7issRea clivity	Hand -ling	Kuot Securit	Me-mory	Color &	<i>C</i> 19
Collagen	Beef Flexor Tendon	0 % 7-10 days	1-2 weeks	Mod.	Fair	Poor	Low	-	Allergy to collagen or chromium
Catgut	Sheep Intestine	0% at 7- 10 days	5-7 Weeks	Mod. High	Fair	Poor	Low	Yellowish brown blue dyed	Allergy to collagen or chromium
Vicryl (polyglactin910)	Copolymer lactide & glycolide coated with polyglactin370 + calcium stearate	50% at 2-3 weeks	60-90 days	Low	Good	Fair	Low	Undyed Violet	Where extended approximate of tissues is needed
Monocryl (poliglecapone25)	Copolymer of glycolide & epslim-caprolactoue	50% at 1wk. 20- 30% at 2wk. lost at 3wk.	90-120 days	Low	Good	Fair	Low	Undyed	Where extended approximate of tissues is needed
Dexon (polyglycolic acid)	Polyglycolic acid 1 st synthetic (1970)	50% at 2-3 weeks	90-120 days	Low	Fair	Good	Low	Dyed green	Where extended approximate of tissues is needed
PDS 99 (polydioxanone)	Polydioxanone	70% at 2wks 50% at 4wks 25% at 6wks	180-210 days	Low	Fair	Poor	High	Clear violet	Heart value prosthesis

Non-Absorbable	Raw Material	Tensile Strength	Absorbtion Rate	Tisoue Reactivit 4	Handli ng	Knot Soundly	Memory	Color & Materia l	<i>C</i> 17
Silk	Organic protein Called Fibroin (silk)	Good	Gradual encapsulation by Fibrous C.7	High	Good	Good	Poor	Black White	Allergy to Silk
Dermalon Ethilon Monosof (nylon)	Loug chain aliphatic polymers nylon 6	Good	Gradual encapsulation by Fibrous C.7	Low	Poor	Poor	High	Clear Black	Permanent tensile strength retention needed
Prolene- Surgilene surgipro	Isotactic crystalline stereoisomer of polypropylene	High	Nonabs-orbable	Low	Poor	Poor	High	Clear Blue	Not Known
Novafil	polybutester	High	Gradual encapsulation by Fibrous C.7	Low	Fair	Poor	Low	Clear Blue	Not Known
Ethibond Mersilene Daeron 7i-eron	Polyester polyethylene terephthalate	High	Gradual encapsulation by Fibrous C.7	Mod.	Good	Good	Fair	Clear Dyed	Not Known
Stainless steel suture	316 L Stainless steel	High	Nonabs-orbable	Low	Poor	Good	Poor	Silver Metallic	Allergy to 316 L Steel

PRINCIPLES OF SUTURE SELECTION

When a wound has reached maximal strength, sutures are no longer needed

foreign bodies in potentially contaminated tissues may convert contamination to infection

Where cosmetic results are important, close and prolonged apposition of wounds and avoidance of irritants will produce the best results

PRINCIPLES OF SUTURE SELECTION

foreign bodies in the presence of fluids containing high concentrations of crystalloids may act as a nidus for precipitation and stone formation

Use the finest suture size that match with the natural strength of the tissue

The composition and properties of a suture are the crucial elements in the decision of what type to use

SELECTING THE SUTURE MATERIAL

Ligatures Coated VI CRYL, MERSILK, NUROLON, Catgut: 310-0

Skin VCRL* rapide, ETHILON, Undyed MONOCKYL,

PROLENE: 6/0-2/0

Subcuticular Undyed MONO CRUL, Coated VI CRUL, clear PD 599.

PROLENE with beads & collars: 4/0-2/0

Fascia under Tension PROLENE, ETHILON, PDSII: 2/0-1

Muscle Coated MCRUL, Dyed Monocryl, PDS99, Catgut:: 310-2

Stomach | Bowel Coated VI CRUL, Dyed MONO CRUL, PDS19: 3/0-1

7endons PROLENE, ETHIBOND | EXCEL, Stainless Steel Wire,

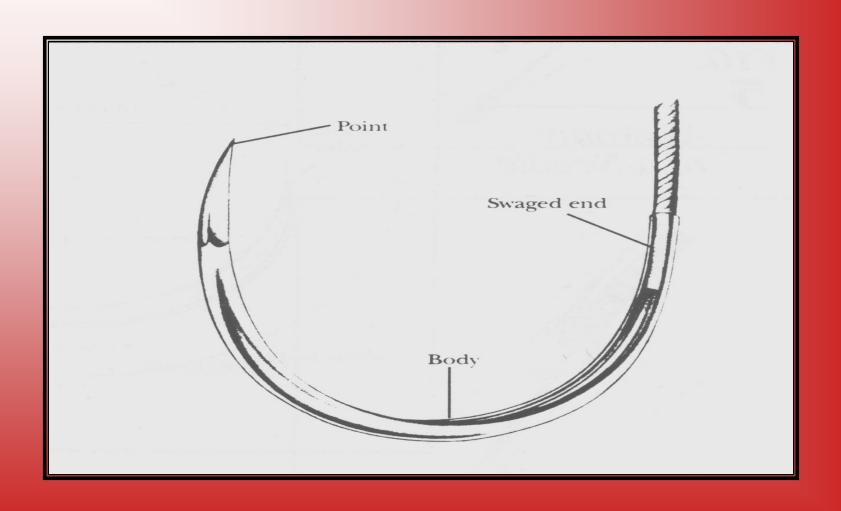
PDS11: 3|0-1

Blood Vessels PROLENE, ETHIBOND EXCEL: 810-210

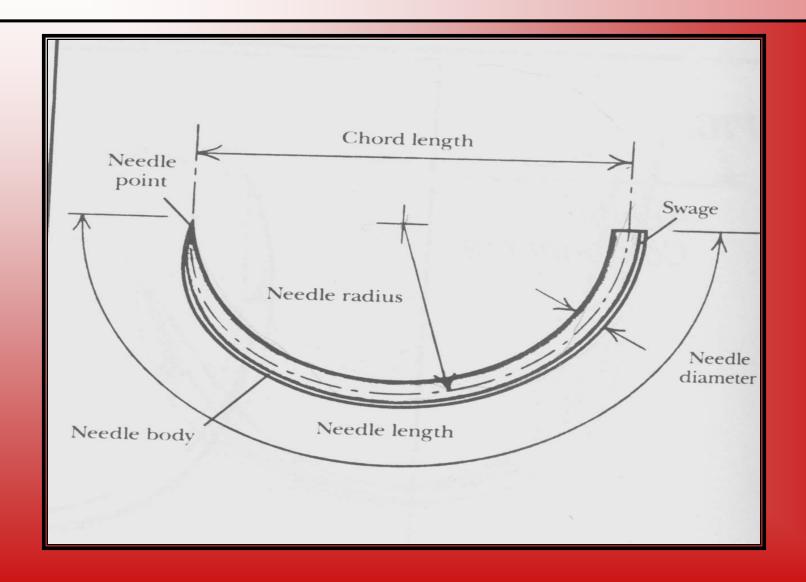
Oculoplastic VICRUL* rapide, MONOCRUL, ETHILON, Plain

Catgut: 5|0-6|0

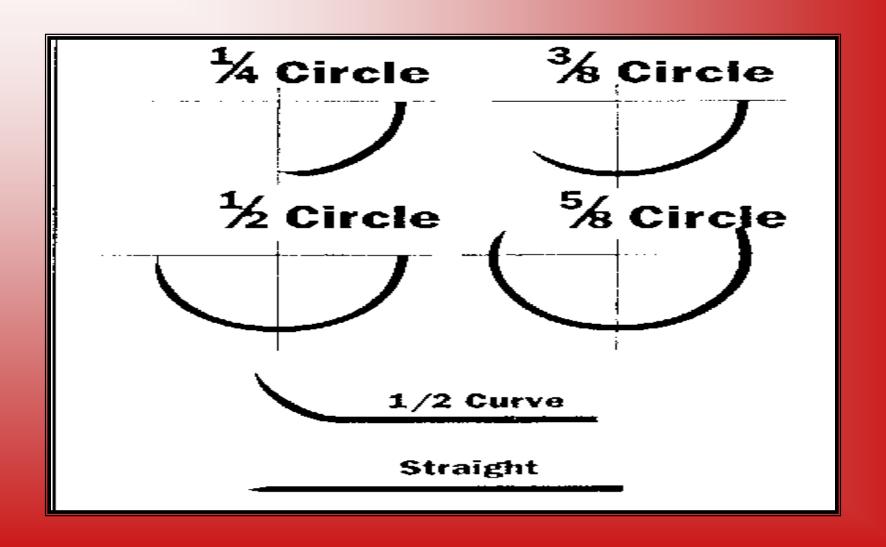
Cornea | Sclereal E741LON, Monofilament VICRUL, Monofilament


MERSILENE: 11/0-9/0

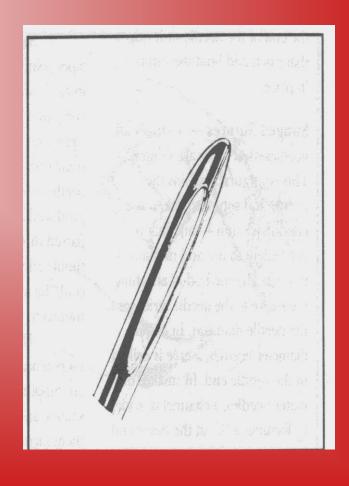
Nerves E749LON: 10|0-5|0


Surgical Needle

variation in needle geometries are just as important as variation in suture sizes & that needle dimensions must be compatible with suture sizes, allowing the two to work in tandem "


Needle Anatomy

Needle Anatomy



Type of needle

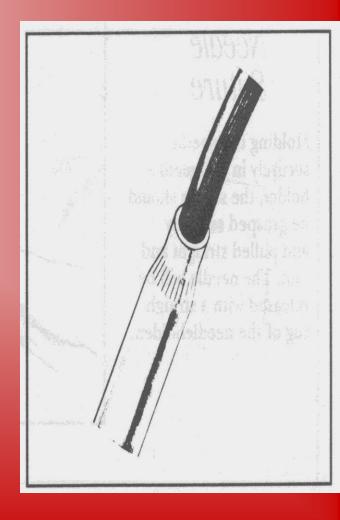
Needle Attachment End

Eyed needle -> Needle threaded with the suture strand 2 strands should be passed to tissues more penetration more tissue disruption

Needle Attachment End

Swaged (atraumatic)

Handling & preparation are minimized, this maintains the integrity of suture strand


Minimal tissue trauma

Do not unthread prematurely

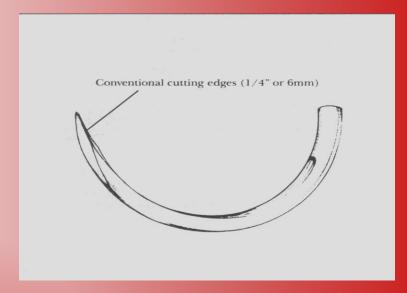
If a needle is accidentally dropped into cavity, the attached suture strand make it easier to find

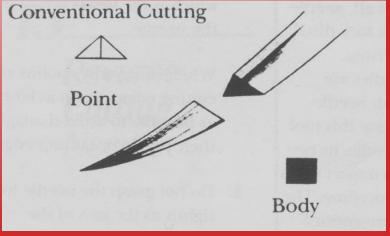
Inventory & time spent cleaning, sharpening & sterilizing reusable eyed needles is eliminated

It eliminates suture fraying or damage due to sharp corners in the eye of eyed needle

Needle Point

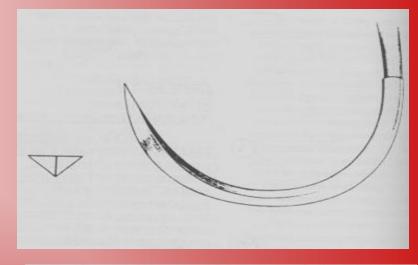
Cutting Needles

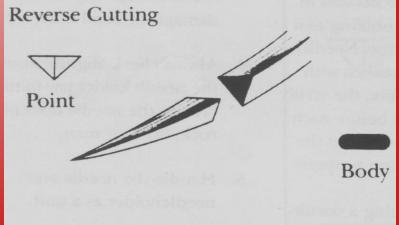

Conventional cutting needle:

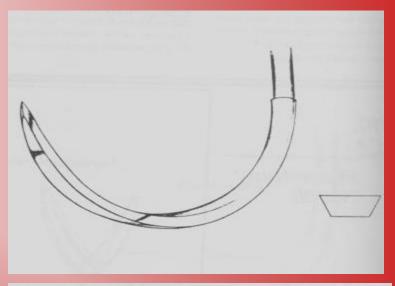

Narrow point, fine wire diameter, fine taper ratio \rightarrow superior penetration of soft tissues

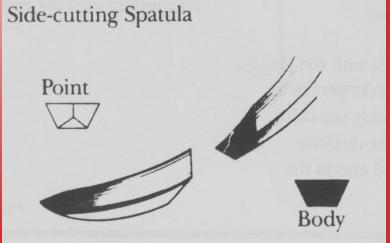
Inside/outside curvatures of body flattens in the grasping area great stability in the

reduces flattened sides bending

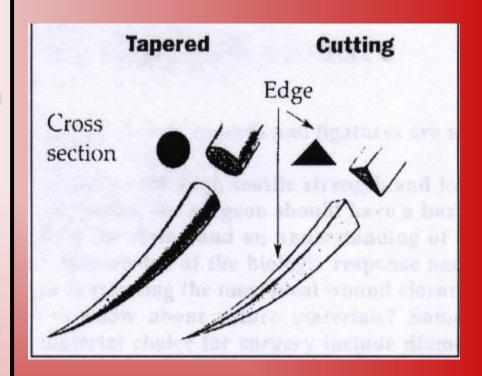

needle holder

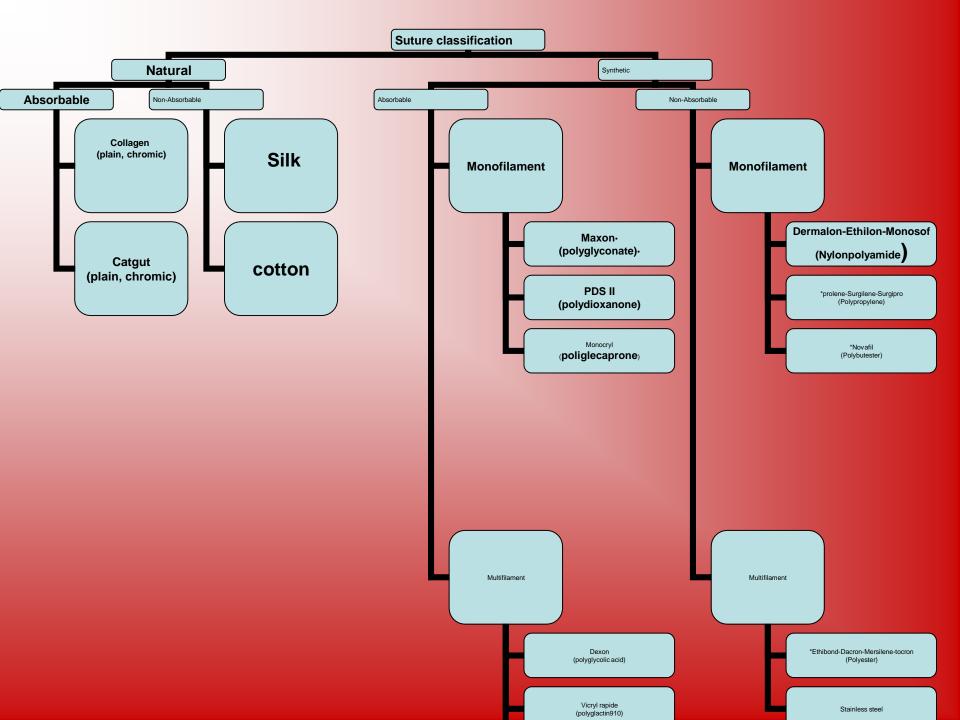


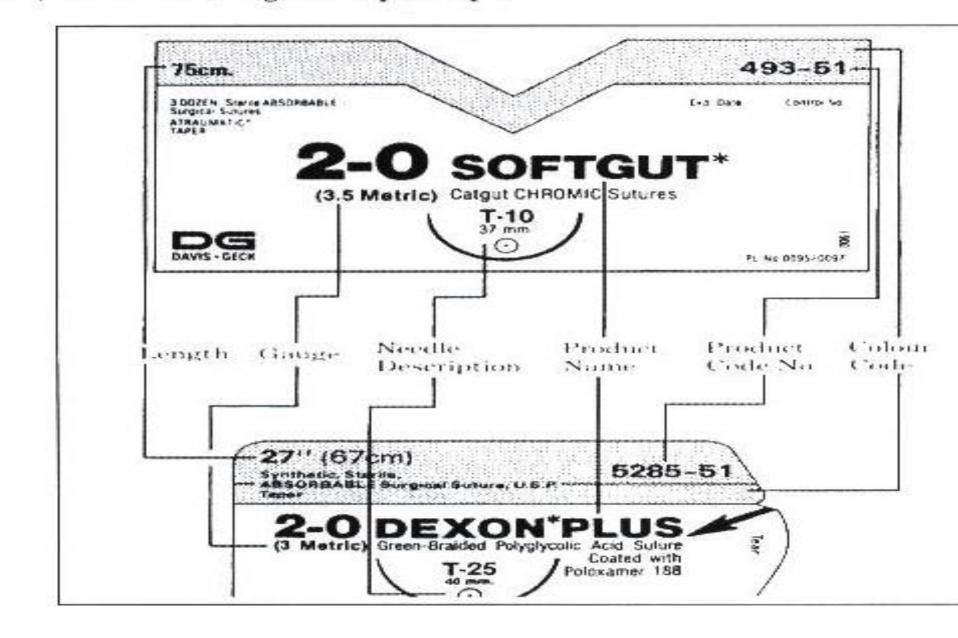

Reverse cutting needle:


- A skin, tendons, ligaments, oral, nasal, pharynx needle
- more strength than similar sized conventional cutting
- the danger of tissue cut out is greatly reduced
- The hole left by the needle leaves a wide wall of tissue against which the suture is to be tied

Side cutting (spatula): For ophthalmic procedures It separated or splits through the thin layers of scleral or corneal tissue & travel within the plane below them Maximum ease of penetration + greater control of needle




Blunt Point Needle


Taper body in rounded blunt point that will not cut through tissue

It dissect friable tissue rather than cutting it

Used for blunt dissection, kidney, intestine, liver, fascia, spleen, cervix (ligating incompetent Cx)

Essential information over typical suture packet

Thank you

