

Optimization of Prognosis of Ovarian Cancers

Lecturer of Ob.Gyn
Benha Faculty of Medicine

Introduction

- Ovarian cancer is the 3rd common gynecologic cancer that accounts for 32% of all gynecologic malignancies.
- It causes 55% of all gynecologic cancer deaths.
 - It is the 4th leading cause of cancer deaths in females

Prognosis

- Prognosis refers to the probable course and/or outcome of a disease or condition.
- Cancer prognosis is most often expressed as the percentage of patients who are expected to survive over five or ten years..

Factors affecting ovarian cancer prognosis

- 1)Factors related to the patient.
- 2) 1)Factors related to the tumor :
 - a) Stage.
 - b) Pathological type.

PROGN OSIS	ECT	GCT	SCST
Best	<i>Mucinous</i> <i>T</i>	Dysgermi noma	LOW GRADE
Worst	Serous T	EST	MALIGNA CY

Factors affecting ovarian cancer prognosis

- C) Degree of differentiation.
- d) Residual tumor mass.
 - >2cm... bad prognosis.
 - <2cm... good prognosis.
- e) DNA content
 - Diploid... good prognosis.
 - Aneuploid... bad prognosis.
- 3) Factors related to the treatment offered.

The five-year survival rates after treatment for each stage of ovarian cancer are as follows:

- Stage 1: 90%
- Stage II: 70%
- Stage III: Patients diagnosed at this stage had an average 5-year survival of 15 to 20% in the past, but newer drugs and more aggressive treatments have extended the survival for many women.
- Stage IV: 1% to 5%

Ovarian cancer has the worst prognosis of gynecologic malignancies

- · WHY?
 - a) LATE Diagnosis as early symptoms are vague so over 75% of Ovarian Cancer cases are diagnosed at an advanced stage.
 - b) Early dissemination as it lies inside the peritoneal cavity.

• c) Para-aortic LN is the 1st relay (?).not usually resectable.

• d) Bilateral oophorectomy is the only prophylactic method.

How to Optimize Ovarian cancer Prognosis?

- Early diagnosis through:
 - · Identifying women at risk.
 - Prompt investigation of suspicious symptoms.
 - Development of screening tests.
- Prevention:
 - Prophylactic oophorectomy.
- Improvement of use of existing therapeutics.
- Further development of experimental therapies

Early diagnosis

- 1.Identify woman at risk.
- 2.Symptomatology.
- 3.Screening tests.
 - 1.Pelvic examination.
 - 2.Cytology.
 - 3.Imaging.
 - 4.Tumor markers

- Age: no age is immune but it is common in
 - Peri, postmenopausal, median age 60.
- Geography:
 - 5 times more in developed countries.
 - Highest in Sweden, Israel, least in Japan...
 - Residence is more important than race.
- Race; White more susceptible

- Reproductive history:
 - Late age of 1st pregnancy.
 - Nulligravida or low parity.
 - No use COC. protection of OCP proportional with duration of use.
 - INCESSANT OVULATION HYPOTHESIS, index of ovarian cancer =time from menarche to cessation of ovulation time of anovulation due to pregnancy and lactation.

- Hyperestrogenic conditions.
- Dysgenetic gonads.

- Past history:
 - Primary BREAST, COLON, ENDOMETRIUM.
 - Rubella at age 12-18, mumps antibody titer, has higher risk.
 - Sanitary pads with talc.
- Family history:
 - If mother or sister have ov cancer, BRCA1,2

Investigations of suspicious symptoms.

• Vague symptoms = Late diagnosis = poor prognosis

Screening Tests:

 DEF: early detection of disease in asymptomatic individual.

• CRITERIA OF IDEAL SCREENING TEST.

VALUE OF SCREENING TEST.

Screening Tests:

- Pelvic Examination.
- · Cytology.
- Imaging.
- Tumor Markers.
- Recent screening.

Annual bimanual Pelvic Examination.

• Palpable ovaries in postmenopausal women is abnormal. (?Palpable ovary syndrome)

Cytology

• Pap smear, paracetesis, Pouch of Douglas peritoneal cytology, U/S GUIDED needle aspiration, questionable and unreliable.

Imaging

- Us: little value...... increased ovarian volume twice the mean volume is suspicious. Presence of cystic ov are suspicious.
- Doppler us: detect neovascularization.
- 3D U/S.
- Cat? Impractical
- MRI? Impractical
- Radioimmuno localization.

Tumor Markers

- Oncodevelopmental (CEA).
- Carcinoplacental. AFP, HCG.
- Metabolic.LDH
- Tumor specific or tumor associated (CA 125).
 - Could help in monitoring the prognosis.
 - Poor sensitivity

Recent screening

- Multimodal screening=use CA125 AS 1st line test, if abnormal TVU/S will be done. (cost, TVU/S, sensitivity, specificity)
- Use transcriptional profiling of ovarian cancer cell line(prostasin& aserine protease are higher in ovarian cancer cells)

Recent screening

 Proteomic pattern identification in serum using (SELDI-TOF-MS).100%sesetivity,95%speceficity.

 Genetic testing for ..BRCA1,BRCA2 mutation carriers.

Prevention

Prophylactic oophorectomy:

- <u>Def: surgical removal of healthy ovaries</u> to protect against future malignancies?
- Indication:
- Advantages: prevent cancer, ovaries, tube. and breast.
- <u>Disadvantage: menopausal</u> <u>symptoms,1ry peritoneal cancer,</u> <u>surgical complication.</u>

Improve Existing Treatment.

- Surgery (cornerstone of treatment).
 - Staging.
 - Surgical procedure.
- · Postoperative treatment.
 - Chemotherapy.
 - Radiotherapy
- · Adjuvant therapy.
- Monitoring treatment.

Surgery

- Staging laparotomy: 1ry method for, diagnosis, staging, treatment and follow up.
 - Vertical incision.
 - Aspirate, or saline washing.
 - Careful assessment., Liver, rt subphrenic space (because lymph of peritoneal cavity drain to inferior surface of diaphragm before getting mediastinal LN. Diaphragmatic metastases 10% stage I, 20% stage II.), All other organs as omentum, intestine,....
 - Para-aortic LN sampling.
 - Proper staging, for prognosis, selection of adjuvant therapy.....

Staging: FIGO staging for ovarian cancer is as follows:

- Stage I Growth limited to the ovaries
 - Stage la Growth limited to 1 ovary, no ascites, no tumor on external surface, capsule intact
 - Stage Ib Growth limited to both ovaries, no ascites, no tumor on external surface, capsule intact
 - Stage Ic Tumor either stage la or lb but with tumor on surface, ruptured capsule, ascites with malignant cells or positive peritoneal washings

- Stage II pelvic extension
 - Stage IIa Extension and/or metastases to the uterus or tubes
 - Stage IIb Extension to other pelvic tissues
 - Stage Ilc Stage Ila or Ilb but with tumor on surface of one or both ovaries, ruptured capsule, ascites with malignant cells or positive peritoneal washings

- Stage III Abdominal extension
 - Stage Illa Microscopic disease on abdominal peritoneal surfaces.
 - Stage IIIb implant dose not exceed 2 cm in diameter and lymph nodes are negative
 - Stage IIIc Abdominal implants larger than 2 cm in diameter and/or positive lymph nodes

• Stage IV - Distant metastases; pleural effusion must have a positive cytology to be classified as stage IV; parenchymal liver metastases equals stage IV

Surgical Procedure.

- 1) Conservative surgery (unilateral salpingio-oophorectomy) Indicated in:
 - a) Young patient want to keep fertility.
 - b) Stage la tumor .
 - c)Reliable follow up.
 - ALLTOGETHER MUST TO BE PRESENT SO IT IS RARELY DONE.

Surgical Procedure

• 2)Radical surgery= TAH+ BSO+ Omentectomy +/-Appendectomy.

• Indications: stage la ,lb ,lla with negative peritoneal wash (rarely done).

Surgical Procedure

- 3)Debulking=Cytoreductive surgery.
 - Aim: remove a tumor bulk, will allow chemotherapy to act.
 - Structures to be removed= TAH+ BSO+ Omentectomy +Appendectomy+ Remove any removable infiltrated organ.

Surgical Procedure

- Types of debulking:
 - 1)Primary Debulking: commonly done (Advanced cases).
 - 2) Interval Debulking.
 - Following suboptimal 1ry debulking.
 - Chemotherapy— debulking— Chemotherapy.
 - 1ry Chemotherapy--- Interval debulking
 - 3)Secondary Debulking.
 - Recurrent cancer.
 - Aggressive disease from the start will require 2ndry debulking.

Surgical Procedure

 Optimum Cytoreductive surgery =reduce residual tumor to minimum, but now=complete absence of disease at end of surgery.

Prognosis high if residue
 <1.6cm(<0.5cm).

Postoperative Treatment depends on:

- Prognostic indicators:
 - · Residual mass.
 - · Tumor grade. Then..
 - · Stage , age, histology.

Postoperative Treatment

No Postoperative Treatment

• 1) well differentiated border line tumors.

• 2)stage la well differentiated tumors.

PostoperativeCHEMOTHERAPY

- Single regimen. (well differentiated tumor)
- Combination regimen. (poorly differentiated tumor)

PostoperativeRADIOTHERAPY

- Must be pelvi-abdominal.
- Only in endometroid tumor.

Chemotherapy.

- Rules of chemotherapy: (combination, courses, sequential, high dose, under strict monitoring)
- Chemotherapy used:
- Advancement:
 - 1)Intraperitoneal administration.
 - 2)In vitro sensitivity tests (stem cell assay)
 - 3) Reversal of drug resistance.

Chemotherapy.

- 4) Development of new lines:
 - a) Paclitaxel.
 - b) Topotecan.
- ROLE OF CHEMOTHERAPY INIMPROVING PROGNOSIS: studies concluded that surgery had small effect survival of women with advanced ovarian cancer, and the type of chemothe3rpy used was more important in improving median survival time.

RADIOTHERAPY

- 1)Intraperitoneal radiotherapy.
- 2) Whole external Abdomino-pelvic radiotherapy.
- Recent reports proved that radiotherapy can provide an effective adjuvant that may improve prognosis.

Monitoring treatment

- Aim:
 - Early detection of persistence or recurrence.
 - To confirm complete response, to stop chemo.
 - To avoid premature discontinuation of TT.

Monitoring treatment

- Noninvasive:
 - Clinical; S&S of recurrence
 - Investigations;
 - T. markers.
 - Imaging.
- If +ve..2nd line chemotherapy.
- If-ve 2nd look lap. after 6-12m.

- Invasive:
- 2nd look laparotomy.
- 2nd look laparoscopy good +ve but not a good -ve.?

Development of experimental therapies.

- 1)New cytotoxic agents, platinum analogues.
- 2)Hormonal therapy; Anti-estrogen
- 3)Stem cell assay,
- 4)NEW DRUGS;
 - Angiogenesis inhibitors.
 - Matrix metalloproteinase inhibitors.

- 5)Gene therapy.
 - Def: introduction of genetic materials into host cell for a therapeutic purpose.
 - TARGETS:
 - 1)Repairing defects in tumor genes.
 - 2)specefic anti-tumor cell immunity.
 - 3)Tumor cell cytotoxicity.
 - Vector: ADENOVIRUS (highly infectious+ wide prevalence of receptors).
 - Results: used in recurrent cases with hope to improve prognosis.

- 6)Viral therapy:
 - DEF: Viruses have evolved to infect, replicate in, and kill human cells.
 - Types;
 - 1)selectively engineered: Adenovirus.
 - 2)Nonselectively engineered: New castle disease virus.
 - Advantages: no cross resistance with standard therapies.
 - Results: great promise to improve prognosis in patient with advanced and recurrent ovarian cancer.

Development of experimental therapies.

- 7)Immunotherapy:
 - a) Nonspecific; attempts to stimulate cell mediated immunity, Corynebacterium Parvum.
 - b) Specific;
 - Tumor specific MCA.
 - Lymphokine activated killer cells.
 - Tumor infiltrating lymphocytes.
 - HER2/NEU passive or active immunization.(HER2/NEU = Oncogenic protein its overexepression in ovarian cancer is related to bad prognosis)
- 8)Mullarian inhibitory factor (under trial)

Development of experimental therapies

- Recently there are trial of cryopreservation of oocytes, embryos, and ovarian tissues to preserve ovarian function in such patients.
- Inspite of the mentioned efforts ovarian cancer still has the worst prognosis among all gynecologic cancers.

